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Energy spectra of disordered systems share a common feature: If the entropy of the quenched disorder is
larger than the entropy of the dynamical variables, the spectrum is locally that of a random energy model and
the correlation between energy and configuration is lost. We demonstrate this effect for the Edwards-Anderson
model, but we also discuss its universality.
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Energy levels in disordered systems are quenched random
variables with distribution induced by the random couplings
between the dynamical variables. In general, the energy lev-
els are correlated, but under certain conditions these correla-
tions can be neglected. A well-known example is thep-spin
generalization of the Sherrington-Kirkpatrick model[1],
where the correlations decrease with increasingp [2,3]. In
the largep limit, the energy levels can be treated asindepen-
dentrandom variables, the corresponding model is called the
random energy model or REM[2]. In a REM, the role of the
dynamical variabless is reduced to that of indices in a table
of uncorrelated random energy values. In this contribution
we will argue that thelocal structure of the energy spectrum
in many disordered systems is that of a REM: energy levels
that are neighbors on the energy axis behave like uncorre-
lated random variables, and the corresponding configurations
are uncorrelated, too. We will demonstrate this explicitly for
the Edwards-Anderson spin glass, but the mechanism behind
this local REM is much more general.

The Edwards-Anderson(EA) model [4] is the paradig-
matic model in spin-glass physics[5]. Its energy is defined as

Ĥssd = − o
ki,jl

Jijsis j , s1d

where theN Ising spinssi = ±1 are located on a regular
lattice, the sum is over all nearest-neighbor pairs of the lat-
tice, andJij denotes the coupling between spinssi and s j.
The Jij are independent, identically distributed(i.i.d.) ran-
dom variables with second momentD. We will assume that
the probability density ofJij is a piecewise continuous func-
tion on the real axis. This includes the Gaussian as well as
the uniform distribution, but excludes, for example, the bi-
modal distribution. In order to get an expression for the den-
sity of states that is asymptotically independent ofN, D, and
the dimension of the lattice we introduce a scaling factor
sNnDd−1/2, wheren is the number of bonds per spin, i.e., we
consider

Hssd = −
1

ÎNnD
o
ki,jl

Jijsis j s2d

instead ofĤ. The prefactor ensures that the asymptotic den-
sity of states is a simple Gaussian,

gsEd =
1

2No
s

d„E − Hssd… .
1

Î2p
e−E2/2. s3d

For finite N we can number the levels in ascending order,

. . . , E−1 , E0 , 0 , E1 , E2 , . . . . s4d

Let us consider all levels inside a small reference interval
fa ,a+dag for fixed a. Let the interval containM levels
Er+1,Er+2, . . . ,Er+M, wherer =rsad is defined by

Er , a ø Er+1. s5d

Now let us assume that theM levels inside our interval are
statistically independent. SinceM =Os2Nd is large, we can
apply asymptotic order statistics[6] to see that for any fixed
,ù1, the scaled tuple

2N−1

Î2p
e−a2/2fsEr+1,Er+2, . . . ,Er+,d − ag s6d

converges in distribution tosW1,W1+W2, . . . ,W1+¯ +W,d,
whereWi are i.i.d. random variables with exponential distri-
bution, psWid=e−Wi. From this one can derive the distribu-
tions pks«kd of the scaled energies

«ksad = lim
N→`

2N−1

Î2p
e−a2/2sEr+k − ad s7d

k=1, . . . ,, to be

pks«kd =
«k

k−1

Gskd
e−«k. s8d

To check our assumption of statistically independent energy
levels we measured the distribution of«k by exhaustive enu-
merations of the EA model on finite square lattices. The data
confirm Eq. (8) even for moderate values ofN, as can be
seen in Fig. 1.

Apparently the energy values in an intervalfa ,a+dag are
asymptotically uncorrelated. To check whether this is true for
the corresponding configurations as well, we consider the
overlap

qss,s8d =
1

N
Uo

j=1

N
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between two configurationss and s8 with energiesEssd
=Er andEss8d=Er+1. For an ensemble of random instances
we get a distributionpsqd that should be given by

psqd =5
1

2NS N

Ns1 − qd/2
D for q = 0,

2

2NS N

Ns1 − qd/2
D for q . 0,

s10d

if s ands8 were uncorrelated. Again this is confirmed by the
numerics, see Fig. 2. Our numerical experiments corroborate
the claim that the energy spectrum of the EA model is locally
that of a REM. We call this the local REM property.

Before we discuss the origin of the local REM property,
let us mention that it has been established rigorously for the
one-dimensional case. The Hamiltonian of the random bond
Ising chain can be written as

Hstd =
1

ÎND
o
j=1

N

uJjut j , s11d

where we have introduced new Ising variablest j : =
−sgnsJjds js j+1. The absolute valueuHstdu is the cost function
of the number partitioning problem(NPP), a classical prob-
lem from combinatorial optimization. The local REM prop-
erty of the NPP[7] has been rigorously proven[[8], Theorem
2.8] for the low energies, i.e., fora=0, but recent numerical
studies have confirmed its validity fora.0, too [9].

The origin of the local REM is best understood in terms
of the bit entropy of the couplingsJij . Let us consider the
case where eachJij is a random integer, uniformly drawn
from the seth0,1, . . . ,2B−1j. Typical energies of the Hamil-
tonian

Ĥssd = − o
ki,jl

Jijsis j s12d

are integers in the interval −ÎnN2B
¯

ÎnN2B. Now let us
assume thatB!N. Then, the number of configurations ex-
ceeds the number of available energy levels by far. All po-
tential energy levels in the interval −ÎnN2B

¯
ÎnN2B are

populated, i.e., the spacing of adjacent energy levels is de-
terministically fixed to 2. In addition, each of these energy
levels is exponentially degenerated. In the NPP this is called
the “easy phase”[10] because it is algorithmically relatively
easy to findone configuration with a predetermined energy
0øE,ÎnN2B. The same holds for spin-glass Hamiltonians
and −ÎnN2B,E,ÎnN2B. In the other regime withB@N,
the levels are no longer degenerated(except the twofold de-
generacy due to the overall spin-flip symmetry), and finding
a unique configuration with energy that comes as close as
possible to a predetermined energy is algorithmically very
hard. In the NPP this is called the “hard” phase. WithOs2Nd
different energy values we get a spacing ofOsÎN2B−Nd be-
tween adjacent levels, but theprecisevalue of the spacing

FIG. 3. Mean(symbols) and standard deviation(error bars) of
the maximum overlap between two configurations with energiesE1

and E2sa=0d for the EA model on a 535 square lattice.B is the
number of bits in theJij , horizontal lines indicate the average(solid)
and the standard deviation(dashed), as predicted by the local REM
hypothesis, Eq.(10). Numerical data are based on random instances
for each value ofB.

FIG. 1. Distribution of«1 and«2 at a=−1 for the EA model on
a 635 square lattice. The numerical distribution was calculated by
averaging over 10 000 random realizations of couplings. Data for
different values ofa look very similar.

FIG. 2. Distribution of the overlap between two configurations
with adjacent energy values ata=−1 for the EA model on a 635
square lattice. The numerical distribution was calculated by averag-
ing over 10 000 random realizations of couplings. Data for different
values ofa look very similar.
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within this range is determined by the low significant bits in
the Jij and cannot be controlled by flipping spins. Now as-
sume that you have a configurations with energyEr and you
want to find the configurations8 that brings you to the next
larger energyEr+1. Flipping a single spin ins changes the
energy at least byOs2B/Nd, which is the order of magnitude
of the minimum of uJij u. Hence, a single spin flip initially
brings you far away from the target. The same is true for any
finite number of spin flips. Reaching a level at distance
OsÎN2B−Nd requires the concerted adjustment ofOsNd spins.
And the spins to be flipped are again determined by the
uncontrollable low significant random bits in theJij . Briefly,
we expect the local REM property to hold whenever the bit
entropy in the quenched disordersBd exceeds the bit entropy
of the dynamical variablessNd.

Our reasoning may not be rigorous, but at least it leads to
a conclusion that can be checked experimentally: the local
REM property should depend on the bit entropy of the
quenched disorder. For the NPP this has been proven rigor-
ously [8]. For the EA model we did the following experi-
ment: we generated theJij as randomB-bit integers, speci-
fied a reference energya, and calculated all configurations
hsj that haveEssd=Er+1 and all configurationshs8j that
haveEss8d=Er+2. Then we identified the maximumqmax of
all overlapsqss ,s8d of configurations from these two sets.
This is repeated for many random instances with varyingB.
According to our heuristic reasoning we expectqmax=1
−2/N for B!N independently of theJij . Due to the large
degeneracy there is always a way to go from one energy
level to the next by a single spin flip. ForB@N, the setshsj
and hs8j consist of a single configuration each(neglecting
spin-flip symmetry), and the overlap between these configu-
rations does depend on the quenched disorder and should be
distributed according to Eq.(10). Figures 3 and 4 show that
this is precisely observed in the numerical experiment. The
transition between the two regimes happens at valuesB&N,
and the transition seems to get sharp asN→`. The situation
is very similar to the “easy-hard” transition in the NPP,

where the critical ratioB/N is 1−OflogsNd /Ng [8,10].
This interplay between the “more significant” noise that

can be controlled by the dynamical variables, and the “less
significant noise” that cannot, is a rather general phenom-
enon. The only prerequisite is an energy that is the sum of
independent random numbers whose bit entropy exceeds the
number of bits to specify a configuration. We have investi-
gated other spin-glass systems like the EA model in higher
dimensions, the Sherrington-Kirkpatrick model, Potts
glasses, andp-spin models[11]. We found that all these sys-
tems share the local REM property. The same is true for
random instances of classical optimization problems, like the
traveling salesman problem and the minimum spanning tree
problem. So far we haven’t found a disordered system with-
out the local REM property.

Our heuristic explanation suggests that the local REM
should hold only for those parts of the spectrum where the
interlevel spacing isOs2−Nd. For many systems, thisexcludes
energies that are relevant in the low-temperature regime. The
one dimensional random bond Ising chain(11) is a simple
example: the ground state and first excitation are highly
correlated. They differ by a single spintk only, k
=argminjhuJj u j. The corresponding energy difference is
OsN−3/2d, which is obviously not dominated by the low-order
bits of the random couplings. Similar arguments apply to
more complicated systems like the SK model, for which it is
known that the overlap distribution in the spin-glass phase
differs from the overlap distribution of the REM. With its
restriction to the paramagnetic phase, the local REM is not
very interesting in terms of the thermodynamic properties of
spin-glass models. It is more relevant in combinatorial opti-
mization, where it is related to the approximability properties
of computationally hard problems. Note that many easy(i.e.,
polynomial time-solvable) optimization problems become
NP hard if one replaces the search for the minimum by the
search for the configuration that has an energy as close as
possible to a given reference energya. How this transition in
computational complexity is related to the appearance of the
local REM property for certain values ofa is an open ques-
tion.

The local REM property seems to be a universal feature
that can be found in all systems with real-valued disorder
and in those parts of their energy spectrum with exponen-
tially small-level spacing. The underlying mechanism is the
dominance of the low-order bits in the quenched disorder
on the local properties of the energy spectrum. The general-
ity of this mechanism might help to put the local REM hy-
pothesis into a rigorous framework, following the footsteps
of Ref. [8].
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FIG. 4. Same experiment as in Fig. 3, but for different values
of N.
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