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Universality in the level statistics of disordered systems
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Energy spectra of disordered systems share a common feature: If the entropy of the quenched disorder is
larger than the entropy of the dynamical variables, the spectrum is locally that of a random energy model and
the correlation between energy and configuration is lost. We demonstrate this effect for the Edwards-Anderson
model, but we also discuss its universality.
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Energy levels in disordered systems are quenched random 1 1 ’
variables with distribution induced by the random couplings 9(E) = @E S(E-H(0) = —e =", 3)
between the dynamical variables. In general, the energy lev- v \2m
els are correlated, but under certain conditions these correl
tions can be neglected. A well-known example is fhspin
generalization of the Sherrington-Kirkpatrick modgl], <E <Ep<O0<E <E,< ... (4)
where the correlations decrease with increagini®,3]. In
the largep limit, the energy levels can be treatediadepen- | et us consider all levels inside a small reference interval
dentrandom variables, the corresponding model is called the¢, o+ da] for fixed «. Let the interval contairM levels
random energy model or RER2]. In a REM, the role of the £ E E wherer =r(a) is defined by
dynamical variables is reduced to that of indices in a table '+ 2" M
of uncorrelated random energy values. In this contribution E <a<E,,. (5)
we will argue that théocal structure of the energy spectrum
in many disordered systems is that of a REM: energy level®ow let us assume that tHd levels inside our interval are
that are neighbors on the energy axis behave like uncorrsstatistically independent. Sindd=0(2V) is large, we can
lated random variables, and the corresponding configurationgpply asymptotic order statisti¢§] to see that for any fixed
are uncorrelated, too. We will demonstrate this explicitly for¢y= 1, the scaled tuple
the Edwards-Anderson spin glass, but the mechanism behind

#or finite N we can number the levels in ascending order,

this local REM is much more general. 2N o,
The Edwards-AndersofEA) model [4] is the paradig- N Y(Ers1,Ervzs - Erag) — @] (6)
matic model in spin-glass physifs]. Its energy is defined as Nem
|:|(<T) == J.oo (1) converges in distribution tOW; ,W;+W,, ... W, +---+W,),
R whereW; are i.i.d. random variables with exponential distri-

h theN Isi . —41 located | bution, p(W,)=e™. From this one can derive the distribu-
where theN Ising spinso;=%1 are located on a regular tions py(,) of the scaled energies

lattice, the sum is over all nearest-neighbor pairs of the lat-

tice, andJ;; denotes the coupling between spimsand o;. oN-1
The J;; are independent, identically distributéti.d.) ran- e(@) = lim —=e *“2(E, ., — @) (7)
dom variables with second momefait We will assume that N—oe 277

the probability density ofj; is a piecewise continuous func-

tion on the real axis. This includes the Gaussian as well akzl’ - £ 10 be

the uniform distribution, but excludes, for example, the bi- gkl
modal distribution. In order to get an expression for the den- P(er) = K _grex, (8)
sity of states that is asymptotically independeniNofA, and Y

the dimension of the lattice we introduce a scaling factor. . C :
. S To check our assumption of statistically independent ener
(NvA)™Y2 wherev is the number of bonds per spin, i.e., we | b Y P oy

. evels we measured the distribution gfby exhaustive enu-
consider merations of the EA model on finite square lattices. The data
1 confirm Eq.(8) even for moderate values ®f, as can be
H(o) = - ﬁz Jijoio] (2 seenin Fig. 1.
VPR @D Apparently the energy values in an interyal, a+da] are
instead Oﬂ:|_ The prefactor ensures that the asymptotic den.asymptotica”y unCOI’related. To Check Whether th|S iS true f0r

sity of states is a simple Gaussian, the corresponding configurations as well, we consider the
overlap
1 N
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FIG. 1. DistribL_Jtion ofs; and ez ala=-1 fo_r the EAmodel on 0 mavimum overlap between two configurations with enerBies
a 6X 5 square lattice. The numerical distribution was calculated byand E,(a=0) for the EA model on a %5 square latticeB is the

aYeraging over 10 000 random rgalizations of couplings. Data fOhumber of bits in the;;, horizontal lines indicate the averagmlid)
different values ofx look very similar. and the standard deviatigdasheq, as predicted by the local REM

hypothesis, Eq(10). Numerical data are based on random instances
between two configurations and ¢’ with energiesE(o) for each value oB.

=E, andE(¢’)=E,,,. For an ensemble of random instances

we get a distributiorp(qg) that should be given by 1 N
H(n) = ——2 3|7, (11)
1 VNAj=1
—( ) forqg=0
B 2M\N(1 -q)/2 ’ where we have introduced new Ising variables =
p(q) = 5 N (10 -sgr(J;)gjo;s1. The absolute valugH(7)| is the cost function
?(N(l —q)/2> forq>0, of the number partitioning problegiNPP), a classical prob-

lem from combinatorial optimization. The local REM prop-

erty of the NPR7] has been rigorously provégfB], Theorem

if o andg’ were uncorrelated. Again this is confirmed by the 2 g] for the low energies, i.e., far=0, but recent numerical

numerics, see Fig. 2. Our numerical experiments corroboratgdies have confirmed its validity fer>0, too[9].

the claim that the energy spectrum of the EAmodel is locally  The origin of the local REM is best understood in terms

that of a REM. We call this the local REM property. of the bit entropy of the couplingg;. Let us consider the
Before we discuss the origin of the local REM property, case where eacly; is a random integer, uniformly drawn

let us mention that it has been established rigorously for théom the se{0,1, ..., #-1}. Typical energies of the Hamil-
one-dimensional case. The Hamiltonian of the random bonghnian

Ising chain can be written as
H(O’):_E ‘]ijo-io-j (12)
(0.5

- " 1 numeric o

B REM prediction are integers in the interval \»¥N2B---\»N28. Now let us

_ assume thaB<N. Then, the number of configurations ex-

02t ] ceeds the number of available energy levels by far. All po-

tential energy levels in the interval\y»N2B---\vN2B are

— populated, i.e., the spacing of adjacent energy levels is de-

a=-1 terministically fixed to 2. In addition, each of these energy

01 ] levels is exponentially degenerated. In the NPP this is called

the “easy phase[10] because it is algorithmically relatively
easy to findone configuration with a predetermined energy

HH 0<E<\»N2B. The same holds for spin-glass Hamiltonians

)
14 1

p(q)

and ~/vN2B<E<\»N2B. In the other regime wittB> N,
the levels are no longer degeneratescept the twofold de-
generacy due to the overall spin-flip symmetrgnd finding

FIG. 2. Distribution of the overlap between two configurationsa un!que configuration W'th energy that comles "’FS close as
with adjacent energy values at—1 for the EA model on a &5 possible to a prede_te_rmlned energy is algorithmically very
square lattice. The numerical distribution was calculated by averag?@rd. In the NPP this is called the “hard” phase. wate")
ing over 10 000 random realizations of couplings. Data for differentdifferent energy values we get a spacing@fyN25") be-
values ofa look very similar. tween adjacent levels, but th@ecisevalue of the spacing
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where the critical ratidd/N is 1-O[log(N)/N] [8,10].

This interplay between the “more significant” noise that
can be controlled by the dynamical variables, and the “less
significant noise” that cannot, is a rather general phenom-
enon. The only prerequisite is an energy that is the sum of
independent random numbers whose bit entropy exceeds the
number of bits to specify a configuration. We have investi-
gated other spin-glass systems like the EA model in higher
dimensions, the Sherrington-Kirkpatrick model, Potts
glasses, an@-spin modelg11]. We found that all these sys-
tems share the local REM property. The same is true for
0 05 1 L5 random instances of classical optimization problems, like the

BIN traveling salesman problem and the minimum spanning tree
problem. So far we haven't found a disordered system with-
out the local REM property.

Our heuristic explanation suggests that the local REM
should hold only for those parts of the spectrum where the
interlevel spacing i©(27N). For many systems, thixcludes
S'energies that are relevant in the low-temperature regime. The
one dimensional random bond Ising chaiil) is a simple
example: the ground state and first excitation are highly
correlated. They differ by a single spimg only, k
L . I =argmin{|J;|}. The corresponding energy difference is
g‘;irt]he mlnlfmum °f|‘:ii|' Htﬁncte, atS|_r|1_gle spin ﬂlpt mn;ally O(N‘3’2)r3 W;ﬂCh is obviously not dominated by the low-order

gs you far away 1rom the target. 'he same 1S true for any - ¢ 1he random couplings. Similar arguments apply to

finite. number of spin flips. Reaching a level at distance . ; A
NioB-N : . . more complicated systems like the SK model, for which it is
O(YN25) requires the concerted adjustmentii) spins. known that the overlap distribution in the spin-glass phase

And the spins to be flipped are again determined by the(‘JIif'fers from the overlap distribution of the REM. With its

uncontrolltagie IIOW T'gg];\'/lcam rantdotm Eltfdm Hj?' B”efz’ bi restriction to the paramagnetic phase, the local REM is not
we expect he loca property o hold whenever the b ery interesting in terms of the thermodynamic properties of

entropy in the quenched disordd) exceeds the bit entropy spin-glass models. It is more relevant in combinatorial opti-

of the dynamical variableeN). _ mization, where it is related to the approximability properties
Our reasoning may not be rigorous, but at least it leads tg; computationally hard problems. Note that many e@sy,
a conclusion that can be checked experimentally: the |°Ca;50IynomiaI time-solvablg optimization problems become
REM property should depend on the bit entropy of thénp hard if one replaces the search for the minimum by the
quenched disorder. For the NPP this has been proven rigogearch for the configuration that has an energy as close as
ously [8]. For the EA model we did the following experi- ossible to a given reference enegyHow this transition in
ment: we generated th as randomB-bit integers, speci-  compytational complexity is related to the appearance of the
fied a reference energy, and calculated all configurations |4ca1 REM property for certain values of is an open ques-
{o} that haveE(o)=E,; and all configurationgo’} that  qn.
haveE(c')=E.,. Then we identified the maximuit,sy of The local REM property seems to be a universal feature
all overlapsq(o,o”) of configurations from these two sets. that can be found in all systems with real-valued disorder
This is repeated for many random instances with var8ng  and in those parts of their energy spectrum with exponen-
According to our heuristic reasoning we expegf,=1  tially small-level spacing. The underlying mechanism is the
—2/N for B<N independently of the);. Due to the large dominance of the low-order bits in the quenched disorder
degeneracy there is always a way to go from one energyn the local properties of the energy spectrum. The general-
level to the next by a single spin flip. F8= N, the set{o} ity of this mechanism might help to put the local REM hy-
and{o'} consist of a single configuration eacheglecting pothesis into a rigorous framework, following the footsteps
spin-flip symmetry, and the overlap between these configu-of Ref. [8].
rations does depend on the quenched disorder and should be

FIG. 4. Same experiment as in Fig. 3, but for different values
of N.

within this range is determined by the low significant bits in
the J;; and cannot be controlled by flipping spins. Now a
sume that you have a configuratiorwith energyE, and you

want to find the configuration’ that brings you to the next
larger energyE, ;. Flipping a single spin inr changes the
energy at least b(28/N), which is the order of magnitude

di;tributed gccording to Ec(_lO). Figures 3 and 4 show that ACKNOWLEDGMENTS
this is precisely observed in the numerical experiment. The
transition between the two regimes happens at vabred, All numerical simulations have been done on our Beowulf

and the transition seems to get sharpNas «. The situation  cluster TINA [12]. This work was supported by Deutsche
is very similar to the “easy-hard” transition in the NPP, Forschungsgemeinschaft under Grant No. ME2044/1-1.
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